

Date Planned ://	Daily Tutorial Sheet-10	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-2	Exact Duration :

116. In a balanced equation $H_2SO_4 + xHI \longrightarrow H_2S + yI_2 + zH_2O$, the values of x, y, z are :

(A)
$$x = 3, y = 5, z = 2$$

(B)
$$x = 4, y = 8, z = 5$$

(C)
$$x = 8, y = 4, z = 4$$

(D)
$$x = 5, y = 3, z = 4$$

Paragraph for Question No. 117 - 121

Pyrolusite is the main ore of manganese in which it is present as MnO_2 . Its Mn content is determined by reducing it under acidic condition to Mn^{2+} with the help of oxalate $(C_2O_4^{2-})$ ion which in turn gets oxidized to CO_2 . The analytical determination is carried out by adding a known excess volume of $C_2O_4^{2-}$ solution to a suspension of the pyrolusite and digesting the mixture on a hot water bath until all the MnO_2 has been reduced. The excess unreacted oxalate solution is then titrated with standardized $KMnO_4$ solution. Thereby Mn content of ore can be calculated. $KMnO_4$ solution is also standardized under acidic condition against oxalate ion wherein MnO_4 ion is reduced to Mn^{2+} and $C_2O_4^{2-}$ ion is oxidized to CO_2 .

- 117. An alternative method for this analysis may be the replacement of oxalate with Fe^{2+} . But this is less frequently used because it requires some special care otherwise we get low analytical results. The probable reaction responsible for this fact is:
 - (A) presence of oxygen can cause oxidation, $Fe^{2+} \longrightarrow Fe^{3+}$
 - **(B)** presence of oxygen can cause reduction, $Fe^{3+} \longrightarrow Fe^{2+}$
 - (C) the oxidation of $Fe^{2+} \longrightarrow Fe^{3+}$ is difficult in the presence of $C_2O_4^{2-}$
 - **(D)** formation of CO_2 reduces $Fe^{3+} \longrightarrow Fe^{2+}$
- **118.** If a student prepared a standard solution of Na₂C₂O₄ by dissolving 3.2 g of dry anhydrous salt into distilled water and making the solution upto 500 mL. The Normality of oxalate solution is
 - (A) 0.085
- **(B)** 0.096
- **(C)** 0.054
- **(D)** 0.032
- 119. 3g of pyrolusite ore were treated with 20g of pure ferrous ammonium sulphate $(\text{FeSO}_4 \cdot (\text{NH}_4)_2 \text{SO}_4 \cdot 6\text{H}_2\text{O})$ and dil. H_2SO_4 . After the reaction solution was diluted to $500\,\text{mL}$. $50\,\text{mL}$ of dilute solution required 10 mL of $0.1\,\text{N}\,\text{K}_2\text{Cr}_2\text{O}_7$ solution. What is the amount of ferrous ammonium sulphate in $500\,\text{mL}$ of solution, which is neutralized by $\text{K}_2\text{Cr}_2\text{O}_7$ solution?
 - **(A)** 16.08 g
- **(B)** 3.92 g
- **(C)** 19.08 g
- **(D)** 5.62 g
- **120.** What is the percentage of pure MnO₂ in the above question?
 - **(A)** 50.9%

(B) 62.5%

(C) 59.4%

- **(D)** 75.4%
- 121. $0.5 \, \mathrm{g}$ sample containing MnO_2 is treated with HCl liberating Cl_2 . The Cl_2 is passed into a solution of KI and $30 \, \mathrm{cm}^3$ of $0.1 \, \mathrm{M}$ hypo is required to titrate the liberated iodine. What is the percentage of MnO_2 in the sample ?
 - **(A)** 22.64%
- **(B)** 26.1%
- **(C)** 62.2%
- **(D)** 72.5%

Paragraph for Question No. 122 to 125

The solution of oxalic acid and sulphuric acid reacts with NaOH according to the reactions

$$H_2C_2O_4 + NaOH \longrightarrow Na_2C_2O_4 + H_2O$$

$$H_2SO_4 + NaOH \longrightarrow Na_2SO_4 + H_2O$$

While the same mixture of acid solution is titrated with KMnO₄ solution which will react with oxalic acid (redox titration) in the presence of H₂SO₄ as

The reaction of oxalic acid with KMnO₄ is very slow therefore the oxalic acid solution is heated to 70°C initially.

Once the reaction has started, its rate automatically increases due to the formation of $\,\mathrm{Mn}^{2+}$ ions which catalyze the reaction.

KMnO₄ behaves as an oxidant in all three mediums

$$MnO_4^- \xrightarrow{Acidic} Mn^{2+}$$

$$MnO_4^- \xrightarrow{Alkaline} MnO_4^{2-}$$

$$MnO_4^- \xrightarrow{Neutral} MnO_2$$

- 122. In the permanganate titration, the solution of reductant is always made acidic by adding H₂SO₄ rather than HCl or HNO_3 because:
 - (A) HCl is a reducing agent and it may get oxidized itself resulting into decrease in the volume of KMnO₄ equivalent to the reducing agent under estimation.
 - (B) ${
 m HNO_3}$ is an oxidizing agent and it may get reduced into consumption of more volume of ${
 m KMnO_4}$ for the end point.
 - (C) $\mathrm{H}_2\mathrm{SO}_4$ (dil.) is neither oxidizing nor reducing agent.
 - (D) HCl and HNO3 are more costlier than H2SO4.
- If 1.34 g Na₂C₂O₄ is dissolved in 500 mL of water and this solution is titrated with $\frac{M}{10}$ KMnO₄ solution 123. in acidic medium, the volume of KMnO₄ used is:
 - (A) 200 mL
- $\frac{200}{3}$ mL (C) 40 mL
- (D) none of these
- In acid base titration using the above mentioned acids $100\,\mathrm{mL}$ $\frac{\mathrm{M}}{10}$ NaOH is used which of the following 124. is correct?
 - 5×10^{-3} moles of $H_2C_2O_4$ (A)
- 5×10^{-3} moles of $H_2C_2O_4 + H_2SO_4$ **(B)**
- 5×10^{-3} moles of H_2SO_4 (C)
- (D) All of the above
- 10 g of oxalate was dissolved in 300 mL of solution. This solution required 250 mL of $\left(\frac{M}{10}\right)$ KMnO₄ in 125. acidic medium for complete oxidation. The percentage purity of oxalate ion in the salt is:
 - 55% (A)
- 57.8% **(B)**
- 45% (C)
- **(D)** None
- of these